The purpose of this short note is to find estimates on the number of zeros of solutions of the equation

$$
\begin{equation*}
u^{\prime \prime}(x)+\frac{C}{x^{2 \alpha}} u(x)=0 \tag{1}
\end{equation*}
$$

for $x \in[1, \infty)$ and $\alpha>1$. We will establish that the number of zeros $N=N(C, \alpha)$ satisfies

$$
\begin{equation*}
N=\mathrm{O}\left(\frac{\sqrt{C}}{\alpha-1}\right) \tag{2}
\end{equation*}
$$

When $\alpha=1$ it is known that solutions of (1) have finitely (in fact, at most one) or infinitely many zeros depending on whether $C \leq 1 / 4$ or $C>1 / 4$.

Let x_{f} be defined by the equation

$$
\frac{C}{x_{f}^{2 \alpha}}=\frac{1 / 4}{x_{f}^{2}}
$$

that is

$$
x_{f}^{\alpha-1}=2 \sqrt{C} .
$$

It follows that $C / x^{2 \alpha} \leq(1 / 4)\left(1 / x^{2}\right)$ exactly for $x \geq x_{f}$, and thus by the comments above and Sturm comparison, the number of zeros of solutions of (1) in the interval $\left[x_{f}, \infty\right)$ is at most one. With this, let us define the recurrence relation

$$
\begin{equation*}
x_{k+1}=x_{k}+\epsilon x_{k}^{\alpha}, \tag{3}
\end{equation*}
$$

where $\epsilon=\pi / \sqrt{C}$. Because in the interval $I_{k}=\left[x_{k}, x_{k+1}\right]$ one has $C / x^{2 \alpha} \leq C / x_{k}^{2 \alpha}$, it follows from Sturm comparison that the number of zeros contained in I_{k} of any solution of (1) cannot exceed 1. Hence we need to estimate the number m of iterations required to reach the point x_{f} under the recurrence relation (3) starting with $x_{0}=1$. To do this we do an area comparison. Let us consider the function $y=1 /\left(\epsilon x^{\alpha}\right)$. The area under its graph in the interval I_{k}, say A_{k}, satisfies

$$
\begin{equation*}
\frac{1}{\epsilon} \frac{x_{k+1}-x_{k}}{x_{k+1}^{\alpha}} \leq A_{k} \leq \frac{1}{\epsilon} \frac{x_{k+1}-x_{k}}{x_{k}^{\alpha}}=1 . \tag{4}
\end{equation*}
$$

On the other hand,

$$
\frac{x_{k+1}}{x_{k}}=1+\epsilon x_{k}^{\alpha-1} \leq 1+\epsilon x_{f}^{\alpha-1}=1+2 \pi
$$

which shows that the number m and of iterations, and thus N, are bounded above by

$$
\begin{equation*}
(1+2 \pi)^{\alpha} \int_{1}^{x_{f}} \frac{d x}{\epsilon x^{\alpha}}=\frac{(1+2 \pi)^{\alpha}}{\epsilon(\alpha-1)}\left(1-\frac{1}{x_{f}^{\alpha-1}}\right) \leq \frac{(1+2 \pi)^{\alpha} \sqrt{C}}{\pi(\alpha-1)} . \tag{5}
\end{equation*}
$$

In order to get a lower for N we argue as follows. Let $0<r_{0}<1$ be fixed. We will define $0<r_{k+1}<r_{k}$ recursively in such a way that any solution of (1) is guaranteed to have at least one zero in the interval $J_{k}=\left[r_{k+1} x_{f}, r_{k} x_{f}\right]$. Suppose $0<r_{k}<1$ is defined. It is easy to see that for $1 \leq x \leq r_{k} x_{f}$ one has

$$
\begin{equation*}
\frac{C}{x^{2 \alpha}} \geq\left(\frac{1+a_{k}}{4}\right) \frac{1}{x^{2}} \tag{6}
\end{equation*}
$$

where a_{k} is given by the equation

$$
\begin{equation*}
r_{k}^{\alpha-1}=\frac{1}{\sqrt{1+a_{k}}} \tag{7}
\end{equation*}
$$

On $\left[1, r_{k} x_{f}\right]$ we compare equation (1) with

$$
\begin{equation*}
v^{\prime \prime}+\left(\frac{1+a_{k}}{4}\right) \frac{1}{x^{2}} v=0 \tag{8}
\end{equation*}
$$

the solutions of which are given by linear combination of

$$
\sqrt{x} \sin \left(\frac{1}{2} \sqrt{a_{k}} \log x\right) \quad \text { and } \quad \sqrt{x} \cos \left(\frac{1}{2} \sqrt{a_{k}} \log x\right) .
$$

It follows that any solution of (8), and thus of (1), will have a zero in the interval $J_{k}=\left[r_{k+1} x_{f}, r_{k} x_{f}\right]$ provided

$$
\begin{equation*}
\log r_{k}-\log r_{k+1}=\frac{2 \pi}{\sqrt{a_{k}}} \tag{9}
\end{equation*}
$$

We use (9) to define the $r_{k}^{\prime} s$ recursively. Notice from (7) that the $a_{k}^{\prime} s$ will be increasing.
We now need to estimate how many iterations are required to bring $r_{k} x_{f}$ for the first time below the value 1 , that is, roughly when $r_{k}=1 / x_{f}$. We will do this again by resorting to integrals. Let $s_{k}=-\log r_{k}$. Then (9) becomes

$$
\begin{equation*}
s_{k+1}-s_{k}=\frac{2 \pi}{\sqrt{e^{2(\alpha-1) s_{k}}-1}} \tag{10}
\end{equation*}
$$

We need to estimate how many steps are needed, roughly, to make $s_{k}=\log x_{f}$. Consider the function

$$
t=\frac{1}{2 \pi} \sqrt{e^{2(\alpha-1) s_{k}}-1}
$$

On each interval J_{k} the area B_{k} under its graph satisfies

$$
\begin{equation*}
1=\frac{1}{2 \pi} \sqrt{e^{2(\alpha-1) s_{k}}-1}\left(s_{k+1}-s_{k}\right) \leq B_{k} \leq \frac{1}{2 \pi} \sqrt{e^{2(\alpha-1) s_{k+1}-1}}\left(s_{k+1}-s_{k}\right) \tag{11}
\end{equation*}
$$

But

$$
\frac{e^{(\alpha-1) s_{k+1}}}{e^{(\alpha-1) s_{k}}}=e^{(\alpha-1)\left(s_{k+1}-s_{k}\right)}=\left(\frac{r_{k}}{r_{k+1}}\right)^{\alpha-1}=e^{\frac{2 \pi(\alpha-1)}{\sqrt{\sqrt{a}_{k}}}} \leq e^{\frac{2 \pi(\alpha-1)}{\sqrt{a_{0}}}},
$$

and therefore

$$
\frac{1}{2 \pi} \int_{s_{0}}^{\log x_{f}} \sqrt{e^{2(\alpha-1) s}-1} d s
$$

is comparable to the number of iterations to be determined. For large C and thus large x_{f} this integral is comparable to

$$
\frac{1}{2 \pi} \int_{s_{0}}^{\log x_{f}} e^{(\alpha-1) s} d s
$$

which is easily computed and found to be less than $\sqrt{C} /(\alpha-1)$.

