
The purpose of this short note is to find estimates on the number of zeros of solutions of the
equation

u′′(x) +
C

x2α
u(x) = 0 , (1)

for x ∈ [1,∞) and α > 1. We will establish that the number of zeros N = N(C,α) satisfies

N = O

( √
C

α− 1

)
. (2)

When α = 1 it is known that solutions of (1) have finitely (in fact, at most one) or infinitely many
zeros depending on whether C ≤ 1/4 or C > 1/4.

Let xf be defined by the equation
C

x2αf
=

1/4

x2f
,

that is
xα−1
f = 2

√
C .

It follows that C/x2α ≤ (1/4)(1/x2) exactly for x ≥ xf , and thus by the comments above and
Sturm comparison, the number of zeros of solutions of (1) in the interval [xf ,∞) is at most one.
With this, let us define the recurrence relation

xk+1 = xk + ϵxαk , (3)

where ϵ = π/
√
C. Because in the interval Ik = [xk, xk+1] one has C/x2α ≤ C/x2αk , it follows from

Sturm comparison that the number of zeros contained in Ik of any solution of (1) cannot exceed
1. Hence we need to estimate the number m of iterations required to reach the point xf under the
recurrence relation (3) starting with x0 = 1. To do this we do an area comparison. Let us consider
the function y = 1/(ϵxα). The area under its graph in the interval Ik, say Ak, satisfies

1

ϵ

xk+1 − xk
xαk+1

≤ Ak ≤ 1

ϵ

xk+1 − xk
xαk

= 1 . (4)

On the other hand,
xk+1

xk
= 1 + ϵxα−1

k ≤ 1 + ϵxα−1
f = 1 + 2π ,

which shows that the number m and of iterations, and thus N , are bounded above by

(1 + 2π)α
∫ xf

1

dx

ϵxα
=

(1 + 2π)α

ϵ(α− 1)

(
1− 1

xα−1
f

)
≤ (1 + 2π)α

√
C

π(α− 1)
. (5)

In order to get a lower for N we argue as follows. Let 0 < r0 < 1 be fixed. We will define
0 < rk+1 < rk recursively in such a way that any solution of (1) is guaranteed to have at least one
zero in the interval Jk = [rk+1xf , rkxf ]. Suppose 0 < rk < 1 is defined. It is easy to see that for
1 ≤ x ≤ rkxf one has

C

x2α
≥
(
1 + ak

4

)
1

x2
, (6)

where ak is given by the equation

rα−1
k =

1√
1 + ak

. (7)
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On [1, rkxf ] we compare equation (1) with

v′′ +

(
1 + ak

4

)
1

x2
v = 0 , (8)

the solutions of which are given by linear combination of

√
x sin

(
1

2

√
ak log x

)
and

√
x cos

(
1

2

√
ak log x

)
.

It follows that any solution of (8), and thus of (1), will have a zero in the interval Jk = [rk+1xf , rkxf ]
provided

log rk − log rk+1 =
2π
√
ak

. (9)

We use (9) to define the r′ks recursively. Notice from (7) that the a′ks will be increasing.
We now need to estimate how many iterations are required to bring rkxf for the first time below

the value 1, that is, roughly when rk = 1/xf . We will do this again by resorting to integrals. Let
sk = − log rk. Then (9) becomes

sk+1 − sk =
2π√

e2(α−1)sk − 1
. (10)

We need to estimate how many steps are needed, roughly, to make sk = log xf . Consider the
function

t =
1

2π

√
e2(α−1)sk − 1 .

On each interval Jk the area Bk under its graph satisfies

1 =
1

2π

√
e2(α−1)sk − 1 (sk+1 − sk) ≤ Bk ≤ 1

2π

√
e2(α−1)sk+1 − 1 (sk+1 − sk) . (11)

But
e(α−1)sk+1

e(α−1)sk
= e(α−1)(sk+1−sk) =

(
rk
rk+1

)α−1

= e
2π(α−1)√

ak ≤ e
2π(α−1)√

a0 ,

and therefore
1

2π

∫ log xf

s0

√
e2(α−1)s − 1 ds

is comparable to the number of iterations to be determined. For large C and thus large xf this
integral is comparable to

1

2π

∫ log xf

s0

e(α−1)s ds ,

which is easily computed and found to be less than
√
C/(α− 1).
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