The purpose of this short note is to find estimates on the number of zeros of solutions of the
equation

u’(z) + x%u(w) =0, (1)

for z € [1,00) and o > 1. We will establish that the number of zeros N = N(C, «) satisfies
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When o = 1 it is known that solutions of (1) have finitely (in fact, at most one) or infinitely many
zeros depending on whether C' < 1/4 or C' > 1/4.

Let ¢ be defined by the equation
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that is

It follows that C/xz** < (1/4)(1/x?) exactly for z > z, and thus by the comments above and
Sturm comparison, the number of zeros of solutions of (1) in the interval [z, 00) is at most one.
With this, let us define the recurrence relation

Th+1l = Tk + 6:6% ) (3)

where ¢ = m/v/C. Because in the interval Ij, = [k, z11] one has C/x>* < C/z2%, it follows from
Sturm comparison that the number of zeros contained in I of any solution of (1) cannot exceed
1. Hence we need to estimate the number m of iterations required to reach the point z; under the
recurrence relation (3) starting with zp = 1. To do this we do an area comparison. Let us consider
the function y = 1/(ex®). The area under its graph in the interval Iy, say Ay, satisfies
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On the other hand,
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which shows that the number m and of iterations, and thus N, are bounded above by

(1+27r)a/1xfdx_(1+27r)a<1_1>§(1—i_27r)a\/5_ (5)
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In order to get a lower for NV we argue as follows. Let 0 < rg < 1 be fixed. We will define
0 < k41 < rg recursively in such a way that any solution of (1) is guaranteed to have at least one
zero in the interval Jy = [rpp12f, 752 ). Suppose 0 < rp < 1 is defined. It is easy to see that for
1 < < rpzy one has
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where a;, is given by the equation
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On [1, 7,z ¢] we compare equation (1) with
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the solutions of which are given by linear combination of
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It follows that any solution of (8), and thus of (1), will have a zero in the interval Ji, = [rr12f, 7p2 ]
provided
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We use (9) to define the r} s recursively. Notice from (7) that the ajs will be increasing.
We now need to estimate how many iterations are required to bring 7 ¢ for the first time below
the value 1, that is, roughly when r;, = 1/xy. We will do this again by resorting to integrals. Let

sp = —logrk. Then (9) becomes
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We need to estimate how many steps are needed, roughly, to make s, = logz;. Consider the

function
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On each interval Jy the area By under its graph satisfies
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and therefore
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is comparable to the number of iterations to be determined. For large C' and thus large x; this
integral is comparable to
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which is easily computed and found to be less than v/C/(a — 1).



